

Question Bank: Calculus Semester – II

Unit 1

- 1. 1. Show that the function $f(x) = x^3 9x^2 + 30x + 7$ is always increasing.
- 2. Find the absolute maximum and minimum values of $f(x)=(x-2)^2$ in [1,4].
- 3. Using Newton's method find the approximate root for the equation $f(x)=x-\cos x$.
- 4. Find the relative extrema of $f(x) = 3x^5 5x^3$.
- 5. Discuss the continuity of the function $f(x)=\sqrt{4-x^2}$
- 6. Divide 100 into two parts such that sum of their square is minimum.
- 7. Show that |x| is continuous everywhere.
- 8. A garden is to be laid out in a rectangular area and protected by a chicken wire fence. What is the largest possible area of the garden if only 72 running feet of chicken wire is available for the fence?
- 9. Find the asymptotes of the function $y = \frac{x}{(x+1)(x+2)^2}$.
- 10. Determine whether the following limit exists. If so, find its value. $\lim_{x \to a} \frac{x^3 x^2}{2x^2}$

Unit 2

- 1. Find the area under the curve $y = x^3$ over the interval [2,3].
- 2. Solve dy/dx = 1 y; y(0) = 0, find y(0.1) and y(0.3) using Euler's method. Taking h = 0.1.
- 3. Solve differential equation $\frac{dy}{dx} = -xy$
- 4. Find the approximate value of $\int_{1}^{2} \frac{1}{x^{2}} dx$ using Simpon's rule with n=10.
- 5. Find the area of the region that is enclosed between the curves $y = x^2$ and y = x + 6.
- 6. Find the area of the region bounded above by x+6, bounded below by $y = x^2$ and bounded on the sides by the lines x = 0 and x = 2.
- 7. Use Euler's Method with a step size of 0.2 to find approximate solution of the initial-value problem dy/dx=y-x, (x)=2 over $0 \le x \le 1$.
- 8. Evaluate ∫ 1/(9 cos2x + 4 sin2x) d
- 9. Show that $y = xe^{-x}$ satisfies the equation xy' = (1-x)y.
- 10. Solve the differential equation $x (x + y) dy y^2 dx = 0$

Unit 3

- 1. Find an equation of the tangent plane to the surface $x^2 + 4y^2 + z^2 = 18$ at the point (1.,2,1). Also find the parametric equation of the line that is normal to the surface at the point (1,2,1).
- 2. Find all relative extrema and saddle points of $f(x,y) = 4xy x^4$.
- 3. Find (1,3) and $f_y(1,3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.
- 4. Evaluate $\lim_{(x,y)\to(0,0)}$ y. log $(x^2 + y^2)$, by converting to polar coordinates.
- 5. Evaluate $\lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2 \log(x^2 + y^2)}$ by converting to polar coordinates.
- 6. Find the directional derivative of $f(x, y)=e^{xy}$ at (2,0) in the direction of unit vector that makes an angle of $\pi/3$ with the positive x-axis.
- 7. Find the second order derivatives of $f(x, y)=y^2e^x+y$

Compiled by: Prof. Pradnya Bhabal.



- 8. Find the directional derivative of $(x, y, z)=x^2y-yz^3+z$ at the point (1, 2, 0) in the direction of the vector a=2i+j-2k.
- 9. Find the gradient vector of f(x, y) if $f(x, y) = x^3 + 2xy^2$. Evaluate it at (-3, -4).
- 10. Locate all relative extrema and saddle points of $f(x, y)=x^3+2y^3-3x^2-24y+16$.

MULU COHEBE AND MERILES

Compiled by: Prof. Pradnya Bhabal.